Intersecting pathology images and gene expression data to understand drivers of complex phenotypes

Barbara E Engelhardt

Jordan Ash Daniel Munro Greg Darnell

Princeton University

SAGES 6/9/2017

Histological images: a picture's worth a thousand quantitative traits

- Histological images used for phenotyping (e.g., cancer diagnosis)
- Features of histological images are associated with:
 - Genotype,
 - Gene expression levels,
 - Cell type,
 - Tissue organization

Quantitative traits from images

- To analyze images, need to characterize and quantify morphology
- Manual annotation of pathology images is infeasible
- Available image segmentation methods are still fairly naïve
- Here, we use an unsupervised deep learning approach to extract features

Convolutional autoencoder (CAE)

- Identify 1024 features from CAE
- CAE objective function is perfect reconstruction of image using only 1024 (estimated) features
- Implemented in Keras, interface to TensorFlow
- Question becomes: what do these image features represent?

4

Segmenting each image

512

Sparse canonical correlation analysis (CCA)

We now represent images as 1024 quantitative features; correlate with genomic data

[Bach & Jordan, 2005]

Sparse canonical correlation analysis

Canonical correlation analysis is a linear projection of two observations into a shared latent subspace that maximizes correlation between observations

Sparsity in loading matrix identifies correlated subsets of genes and image features [Witten et al. 2009, Zhao et al., 2016]

Three applications of ImageCCA

- TCGA: Breast invasive carcinoma study
 - Association of gene expression with tissue features
- TCGA: Brain lower grade glioma
 - Image segmentation
- Genotype-Tissue Expression (GTEx)
 - Identify genetic variants associated with tissue morphology

TCGA data: Breast invasive carcinoma study (BRCA)

- 1,541 histological images
 - 1,502 primary tumor samples
 - 7 metastatic tumor samples
 - 32 normal tissue samples
- 1,106 tissue biopsy samples
 - TPM values for 20,501 genes from RNA-seq
- 1,073 breast cancer patients; labels are sample type

BRCA: component captures extracellular matrix

р

top GO terms

BP	cell adhesion biological adhesion	3e-6 3e-6
СС	proteinaceous extracellular matrix	3e-8
	extracellular matrix	2e-7
MF	ion channel binding collagen binding	1e-3 2e-3

CCA variable 1

TCGA data: Brain Lower Grade Glioma (LGG)

- 484 histological images
 - 471 primary tumor samples
 - 13 recurrent tumor samples
- 401 tissue biopsy samples
 - TPM values for 20,501 genes from RNA-seq
- 392 lower grade glioma patients; labels are sample type

LGG: component represents synaptic structure

<u>Top GO terms</u> Synaptic transmission Synaptic signaling Trans-synaptic signaling Cell-cell signaling

1.3e-23 1.3e-23 1.3e-23 5.6e-18

LGG: component represents proportion of blood in brain tissues

Component genes mainly expressed only in whole blood

Top GO termsImmune response3.9e-29Immune system process1.9e-27Defense response2.0e-21Regulation of immune system process1.1e-20

LGG: Identifying cancer in an image

- slide classifier over each
 512x512 image; probability of
 cancer in each 128x128 window
- create a heatmap of these probabilities that highlights regions of the image that the network predicts are cancerous
- darker colors indicate higher probability of cancer

Genotype-Tissue Expression (GTEx) Consortium v6 Data

GTEx data: histological images

- 2,221 histological images
 - 29 different tissue types
- 2,221 tissue biopsy samples
 - TPM values for 18,659 genes from RNA-seq
- 499 participants; labels are tissue type

GTEx histological images: t-SNE

GTEx: component identifies muscle tissues

	top GO terms	р
BP	muscle system process muscle contraction	< 1e-30 < 1e-30
СС	contractile fiber myofibril	< 1e-30 6e-30
MF	actin binding structural constituent of muscle	2e-11 5e-11

GTEx: component identifies neuronal tissues

top GO terms

р

ΒP	synaptic transmission, cholinergic	2e-5
	muscle organ development	9e-5
CC	acetylcholine-gated channel	6e-7
	complex	
	myofibril	2e-5
MF	acetylcholine-activated cation-	5e-7
	selective channel activity	
	acetylcholine binding	9e-7

Convolutional filters estimated

L2

L1

L3

L4

CCA components correlate with covariates

Genetic associations with image features

rs11102981 synaptophysin-like 2 (SYPL2) FDR < 0.087

rs68178377 protein phosphatase 6 (PPP6R2) FDR < 0.10

Genetic association with image feature

eQTL for synaptophysin-like 2 (SYPL2)

Image phenotype associated with muscle tissue morphology

Image phenotype associated with muscle tissue morphology

Genetic association with image feature

FDR < 0.10

Image phenotype associated with brain tissue morphology

Association of image phenotype driving brain and testis morphology

protein phosphatase 6 (PPP6R2)

Cerebral cortex: neuronal cells

Conclusions

- Automatically extracted features from histology images
- Correlated image features with high dimensional gene expression
- Components captured tissue type, cell type heterogeneity, and morphological features of data
- Identified genetic variants associated with specific image features in muscle and brain/testis

Acknowledgements

Collaborators

- Sayan Mukherjee (Duke)
- GTEx Consortium
 - LDACC: Kristin Ardlie
 - Pathology imaging lab:
 - Phil Branton

Princeton University

- Jordan Ash
- Daniel Munro
- Greg Darnell

Funding

- NIH R01 MH101822
- Sloan Faculty Fellowship

Visualizing the GTEx decoder

- Generated random 1024 vectors on the manifold of images
- pushed through GTEx decoder to generate an image

